
Lecture Lecture –– 44
S tiS ti BBSectionSection--BB

Macro Language
and

Macro processor

IntroductionIntroduction
MacroMacro InstructionsInstructionsMacro Macro InstructionsInstructions

The assembly language programmer often finds it necessary
to repeat some blocks of code many times in the course of a
program.

The block may consist of code to save or exchange set of
registers, for eg. Or code to set up linkages or perform a
series of arithmetic operations.

In this situation, the programmer will find a macro instruction
facility useful.

Macro instructions (often called macros) are single-line
abbreviations for groups of instructions. In employing a

th ti ll d fi i l “macro, the programmer essentially defines a single “
instruction” to represent a block of code.

Macro instruction are usually considered ac o s uc o a e usua y co s de ed

an extension of the basic assembler

language, and the macro processor is

i d t i f th b iviewed as an extension of the basic

assembler program.p g

As a form of programming language,

however, macro instruction languages

differ significantly from assembly

language and compiled algebraic

Macro InstructionsMacro InstructionsMacro InstructionsMacro Instructions
In its simplest form, a macro is an abbreviation for a sequence of operations.
Consider the following program:
Example 1:p

.

.

.
A 1, DATA Add contents of DATA to register 1
A 2, DATA Add contents of DATA to register 2
A 3 DATA Add contents of DATA to register 3A 3, DATA Add contents of DATA to register 3

.

.

.
A 1, DATA Add contents of DATA to register 1
A 2, DATA Add contents of DATA to register 2
A 3 DATA Add contents of DATA to register 3A 3, DATA Add contents of DATA to register 3

.

.

.
DATA DC F’5’

.

.

.
In the above program the sequence

A 1, DATA
A 2, DATA
A 3, DATA occurs twice

A macro facility permits us to attach a name to this
sequence and to use this name in its place
A macro processor effectively constitutes a separate
language processor with its own language.
We attach a name to a sequence by means of a macroWe attach a name to a sequence by means of a macro
instruction definition, which is formed in the following
manner :

St t f d fi iti MACROStart of definition MACRO
Macro name []

Sequence to be abbreviated __________

End of definition MEND__________

The MACRO pseudo-op is the first line of the definition and

id tifi th f ll i li th i t tiidentifies the following line as the macro instruction name.

Following the name line is the sequence of instructions being

abbreviated – the instructions comprising the “macro”

instruction.

The definition is terminated by a line with the MEND (“macro

end”) pseudo-op.

Once the macro has been defined, the use of the macro

name as an operation mnemonic in an assembly program isname as an operation mnemonic in an assembly program is

equivalent to the use of the corresponding instruction

sequencesequence.

Our example might be rewritten as follows, assigning the

name “INCR” to the repeated sequence

Source Expanded Source
MACRO
INCR
A 1,DATA
A 2, DATA
A 3, DATA
MEND
. .
. .
. .
INCR A 1,DATA C ,
. A 2,DATA
. A 3. DATA
. .

.

.

INCR A 1,DATA
. A 2,DATA
. A 3. DATA
.

DATA DC F’5’ DATA DC F’5’
.
.
.

In this case the macro processor replaces each macro call

with the lines

A 1, DATA

B 2, DATA

C 3 DATAC 3, DATA

This process of replacement is called expanding the macro.

Notice that the macro definition itself does not appear in the

expanded source code.expanded source code.

The definition is saved by the macro processor. The

i th f thoccurrence in the source program of the macro name, as an

operation mnemonic to be expanded, is called a macro call.

